Skip to main content

65 posts tagged with "python"

View All Tags

· 17 min read
Oleg Kulyk

Requests vs. HTTPX - A Detailed Comparison

In the realm of Python development, making HTTP requests is a frequent task that requires efficient and reliable libraries. Two prominent libraries, Requests and HTTPX, have been widely adopted by developers for this purpose. Each library has its strengths and weaknesses, making the choice between them dependent on the specific requirements of the project. This research aims to provide a comprehensive comparison between Requests and HTTPX, considering various aspects such as asynchronous support, HTTP/2 compatibility, connection management, error handling, and performance metrics.

Requests, a well-established library, is celebrated for its simplicity and ease of use. It is often the go-to choice for developers who need to make straightforward, synchronous HTTP requests. However, its lack of native support for asynchronous operations and HTTP/2 can be a limitation for high-concurrency applications. On the other hand, HTTPX, a newer library, offers advanced features such as asynchronous support and HTTP/2, making it a more powerful tool for performance-critical applications.

This research will delve into the key feature comparisons and performance metrics of both libraries, providing detailed code examples and explanations. By examining these factors, developers can make an informed decision on which library best suits their needs. This comparison is supported by various benchmarks and source.

· 11 min read
Oleg Kulyk

BeautifulSoup Cheatsheet with Code Samples

BeautifulSoup is a powerful Python library that simplifies the process of web scraping and HTML parsing, making it an essential tool for anyone looking to extract data from web pages. The library allows users to interact with HTML and XML documents in a more human-readable way, facilitating the extraction and manipulation of web data. In this report, we will delve into the core concepts and advanced features of BeautifulSoup, providing detailed code samples and explanations to ensure a comprehensive understanding of the library's capabilities. Whether you're a beginner or an experienced developer, mastering BeautifulSoup will significantly enhance your web scraping projects, making them more efficient and robust.

· 7 min read
Oleg Kulyk

The best Python HTTP clients

Python has emerged as a dominant language due to its simplicity and versatility. One crucial aspect of web development and scraping is making HTTP requests, and Python offers a rich ecosystem of libraries tailored for this purpose.

This report delves into the best Python HTTP clients, exploring their unique features and use cases. From the ubiquitous Requests library, known for its simplicity and ease of use, to the modern and asynchronous HTTPX, which supports the latest protocols like HTTP/2 and WebSockets, there is a tool for every need. Additionally, libraries like aiohttp offer versatile async capabilities, making them ideal for real-time data scraping tasks.

For those requiring low-level control, urllib3 stands out with its robust and flexible features. On the other hand, Uplink provides a declarative approach to API interactions, while GRequests combines the simplicity of Requests with the power of Gevent's asynchronous capabilities. This report also highlights best practices for making HTTP requests and provides a comprehensive guide to efficient web scraping using HTTPX and ScrapingAnt. By understanding the strengths and weaknesses of each library, developers can make informed decisions and choose the best tool for their web scraping and development tasks.

· 10 min read
Oleg Kulyk

How to Ignore SSL Certificate in Python Requests Library

Handling SSL certificate errors is a common task for developers working with Python's Requests library, especially in development and testing environments. SSL certificates are crucial for ensuring secure data transmission over the internet, but there are scenarios where developers may need to bypass SSL verification temporarily. This comprehensive guide explores various methods to ignore SSL certificate errors in Python's Requests library, complete with code examples and best practices. While bypassing SSL verification can be useful in certain circumstances, it is essential to understand the security implications and adopt appropriate safeguards to mitigate risks. This guide covers disabling SSL verification globally, for specific requests, using custom SSL contexts, trusting self-signed certificates, and utilizing environment variables. Additionally, it delves into the security risks associated with ignoring SSL certificate errors and provides best practices for maintaining secure connections.

· 9 min read
Oleg Kulyk

How to read from MongoDB to Pandas

The ability to efficiently read and manipulate data is crucial for effective data analysis and application development. MongoDB, a leading NoSQL database, is renowned for its flexibility and scalability, making it a popular choice for modern applications. However, to leverage the full potential of MongoDB data for analysis, it is essential to seamlessly integrate it with powerful data manipulation tools like Pandas in Python.

This comprehensive guide delves into the various methods of reading data from MongoDB into Pandas DataFrames, providing a detailed roadmap for developers and data analysts. We will explore the use of PyMongo, the official MongoDB driver for Python, which allows for straightforward interactions with MongoDB. Additionally, we will discuss PyMongoArrow, a tool designed for efficient data transfer between MongoDB and Pandas, offering significant performance improvements. For handling large datasets, we will cover chunking techniques and the use of MongoDB's Aggregation Framework to preprocess data before loading it into Pandas.

· 14 min read
Oleg Kulyk

Guide to Scraping and Storing Data to MongoDB Using Python

Data is a critical asset, and the ability to efficiently extract and store it is a valuable skill. Web scraping, the process of extracting data from websites, is a fundamental technique for data scientists, analysts, and developers. Python, with its powerful libraries such as BeautifulSoup and Scrapy, provides a robust environment for web scraping. MongoDB, a NoSQL database, complements this process by offering a flexible and scalable solution for storing the scraped data. This comprehensive guide will walk you through the steps of scraping web data using Python and storing it in MongoDB, leveraging the capabilities of BeautifulSoup, Scrapy, and PyMongo. Understanding these tools is not only essential for data extraction but also for efficiently managing and analyzing large datasets. This guide is designed to be SEO-friendly and includes detailed explanations and code samples to help you seamlessly integrate web scraping and data storage into your projects. (source, source, source, source, source)

· 14 min read
Oleg Kulyk

Guide to Cleaning Scraped Data and Storing it in PostgreSQL Using Python

In today's data-driven world, the ability to efficiently clean and store data is paramount for any data scientist or developer. Scraped data, often messy and inconsistent, requires meticulous cleaning before it can be effectively used for analysis or storage. Python, with its robust libraries such as Pandas, NumPy, and BeautifulSoup4, offers a powerful toolkit for data cleaning. PostgreSQL, a highly efficient open-source database, is an ideal choice for storing this cleaned data. This research report provides a comprehensive guide on setting up a Python environment for data cleaning, connecting to a PostgreSQL database, and ensuring data integrity through various cleaning techniques. With detailed code samples and explanations, this guide is designed to be both practical and SEO-friendly, helping readers navigate the complexities of data preprocessing and storage with ease (Python Official Website, Anaconda, GeeksforGeeks).

· 8 min read
Oleg Kulyk

Crawlee for Python Tutorial with Examples

Web scraping has become an essential tool for data extraction in various industries, from market analysis to academic research. One of the most effective libraries for Python available today is Crawlee, which provides a robust framework for both simple and complex web scraping tasks. Crawlee supports various scraping scenarios, including dealing with static web pages using BeautifulSoup and handling JavaScript-rendered content with Playwright. In this tutorial, we will delve into how to set up and effectively use Crawlee for Python, providing clear examples and best practices to ensure efficient and scalable web scraping operations. This comprehensive guide aims to equip you with the knowledge to build your own web scrapers, whether you are just getting started or looking to implement advanced features. For more detailed documentation, you can visit the Crawlee Documentation and the Crawlee PyPI.

· 10 min read
Oleg Kulyk

How to Read HTML Tables With Pandas

In the era of big data, efficient data extraction and processing are crucial for data scientists, analysts, and web scrapers. HTML tables are common sources of structured data on the web, and being able to efficiently extract and process this data can significantly streamline workflows. This is where the pandas.read_html() function in Python comes into play. pandas.read_html() is a powerful tool that allows users to extract HTML tables from web pages and convert them into pandas DataFrames, making it easier to analyze and manipulate the data.

This article provides a comprehensive guide on how to use pandas.read_html() to read HTML tables, covering both basic and advanced techniques. Whether you are extracting tables from URLs or HTML strings, or dealing with complex table structures, the methods discussed in this guide will enhance your web scraping capabilities and data processing efficiency. We will also explore how to handle nested tables, utilize advanced parsing options, integrate with web requests, transform and clean data, and optimize performance for large datasets. By mastering these techniques, you can significantly enhance your data analysis workflow and ensure accurate and efficient data extraction.

Throughout this guide, we will provide code samples and detailed explanations to help you understand and implement these techniques effectively. If you're ready to take your web scraping and data analysis skills to the next level, read on to learn more about the powerful capabilities of pandas.read_html().

· 11 min read
Oleg Kulyk

How to Parse XML in Python

Parsing XML (eXtensible Markup Language) in Python is a fundamental task for many developers, given XML's widespread use in data storage and transmission. Python offers a variety of libraries for XML parsing, each catering to different needs and use cases. Understanding the strengths and limitations of these libraries is crucial for efficient and effective XML processing. This guide explores both standard and third-party libraries, providing code samples and detailed explanations to help you choose the right tool for your project.

Python's standard library includes modules like xml.etree.ElementTree, xml.dom.minidom, and xml.sax, each designed for specific parsing requirements. For more advanced needs, third-party libraries like lxml, BeautifulSoup, and untangle offer enhanced performance, leniency in parsing malformed XML, and ease of use.

This comprehensive guide also delves into best practices for XML parsing in Python, addressing performance optimization, handling large files, and ensuring robust error handling and validation. By the end of this guide, you will be equipped with the knowledge to handle XML parsing tasks efficiently and securely, regardless of the complexity or size of the XML documents you encounter.